Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Am J Case Rep ; 25: e942444, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38521969

RESUMO

BACKGROUND Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disease that can present at different ages with different phenotypes. Missed and delayed diagnoses are fairly common. Many variants in the DNAH5 gene have been described that confirm the diagnosis of PCD. Advances in medicine, especially in molecular genetics, have led to increasingly early discoveries of such cases, especially in those with nonclassical presentations. CASE REPORT This report describes a patient with bronchiectasis, lung cysts, finger clubbing, and failure to thrive who was misdiagnosed for several years as having asthma. Many differentials were suspected and worked up, including a suspicion of PCD. Genetic tests with whole-exome sequencing (WES) and whole-genome sequencing (WGS) detected a heterozygous, likely pathogenic, variant in the DNAH5 gene associated with PCD. CONCLUSIONS Despite a thorough workup done for this case, including a genetic workup, a PCD diagnosis was not established. We plan to reanalyze the WGS in the future, and with advent of technology and better coverage of genes, a genetic answer for this challenging case may resolve this diagnostic quandary in the future.


Assuntos
Síndrome de Kartagener , Humanos , Dineínas do Axonema/genética , Testes Genéticos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Pulmão , Mutação
2.
Prostate ; 84(5): 460-472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192023

RESUMO

BACKGROUND: Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS: In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS: Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS: NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Humanos , Masculino , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Sequenciamento do Exoma , Qualidade de Vida , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Dineínas do Axonema/genética , Fatores de Elongação da Transcrição/genética , Cinesinas/genética
4.
J Assist Reprod Genet ; 40(10): 2485-2492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574497

RESUMO

PURPOSE: To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS: A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS: Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS: Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Gravidez , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Sêmen , Espermatozoides , Infertilidade Masculina/genética , Mutação/genética , Dineínas do Axonema/genética
5.
BJS Open ; 7(3)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196196

RESUMO

BACKGROUND: The aim of this study was to construct a predictive signature integrating tumour-mutation- and copy-number-variation-associated features using machine learning to precisely predict early relapse and survival in patients with resected stage I-II pancreatic ductal adenocarcinoma. METHODS: Patients with microscopically confirmed stage I-II pancreatic ductal adenocarcinoma undergoing R0 resection at the Chinese PLA General Hospital between March 2015 and December 2016 were enrolled. Whole exosome sequencing was performed, and genes with different mutation or copy number variation statuses between patients with and without relapse within 1 year were identified using bioinformatics analysis. A support vector machine was used to evaluate the importance of the differential gene features and to develop a signature. Signature validation was performed in an independent cohort. The associations of the support vector machine signature and single gene features with disease-free survival and overall survival were assessed. Biological functions of integrated genes were further analysed. RESULTS: Overall, 30 and 40 patients were included in the training and validation cohorts, respectively. Some 11 genes with differential patterns were first identified; using a support vector machine, four features (mutations of DNAH9, TP53, and TUBGCP6, and copy number variation of TMEM132E) were further selected and integrated to construct a predictive signature (the support vector machine classifier). In the training cohort, the 1-year disease-free survival rates were 88 per cent (95 per cent c.i. 73 to 100) and 7 per cent (95 per cent c.i. 1 to 47) in the low-support vector machine subgroup and the high-support vector machine subgroup respectively (P < 0.001). Multivariable analyses showed that high support vector machine was significantly and independently associated with both worse overall survival (HR 29.20 (95 per cent c.i. 4.48 to 190.21); P < 0.001) and disease-free survival (HR 72.04 (95 per cent c.i. 6.74 to 769.96); P < 0.001). The area under the curve of the support vector machine signature for 1-year disease-free survival (0.900) was significantly larger than the area under the curve values of the mutations of DNAH9 (0.733; P = 0.039), TP53 (0.767; P = 0.024), and TUBGCP6 (0.733; P = 0.023), the copy number variation of TMEM132E (0.700; P = 0.014), TNM stage (0.567; P = 0.002), and differentiation grade (0.633; P = 0.005), suggesting higher predictive accuracy for prognosis. The value of the signature was further validated in the validation cohort. The four genes included in the support vector machine signature (DNAH9, TUBGCP6, and TMEM132E were novel in pancreatic ductal adenocarcinoma) were significantly associated with the tumour immune microenvironment, G protein-coupled receptor binding and signalling, cell-cell adhesion, etc. CONCLUSION: The newly constructed support vector machine signature precisely and powerfully predicted relapse and survival in patients with stage I-II pancreatic ductal adenocarcinoma after R0 resection.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Variações do Número de Cópias de DNA , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/cirurgia , Microambiente Tumoral , Dineínas do Axonema/genética , Neoplasias Pancreáticas
6.
Pediatr Pulmonol ; 58(7): 1942-1949, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088965

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is typically an autosomal recessive disease characterized by recurrent infections of the lower respiratory tract, frequent and severe otitis media, chronic rhinosinusitis, neonatal respiratory distress, and organ laterality defects. While severe lower respiratory tract infections and bronchiectasis are common in Inuit, PCD has not been recognized in this population. METHODS: We report a case series of seven Inuit patients with PCD identified by genetic testing in three Canadian PCD centers. RESULTS: Patients ranged from 4 to 59 years of age (at time of last evaluation) and originated in the Qikiqtaaluk region (Baffin Island, n = 5), Nunavut, or Nunavik (northern Quebec, n = 2), Canada. They had typical features of PCD, including neonatal respiratory distress (five patients), situs inversus totalis (four patients), bronchiectasis (four patients), chronic atelectasis (six patients), and chronic otitis media (six patients). Most had chronic rhinitis. Genetic evaluation demonstrated that all had homozygous pathogenic variants in DNAH11 at NM_001277115.1:c.4095+2C>A. CONCLUSIONS: The discovery of this homozygous DNAH11 variant in widely disparate parts of the Nunangat (Inuit homelands) suggests this is a founder mutation that may be widespread in Inuit. Thus, PCD may be an important cause of chronic lung, sinus, and middle ear disease in this population. Inuit with chronic lung disease, including bronchiectasis or laterality defects, should undergo genetic testing for PCD. Consideration of including PCD genetic analysis in routine newborn screening should be considered in Inuit regions.


Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Otite Média , Síndrome do Desconforto Respiratório do Recém-Nascido , Humanos , Alelos , Dineínas do Axonema/genética , Canadá/epidemiologia , Cílios , Transtornos da Motilidade Ciliar/genética , Inuíte/genética , Síndrome de Kartagener/diagnóstico , Otite Média/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
7.
Genet Med ; 25(5): 100798, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727596

RESUMO

PURPOSE: Primary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance. METHODS: In addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed. RESULTS: In this study, we identified homozygous pathogenic variants in CLXN (EFCAB1/ODAD5) in 3 individuals with laterality defects and respiratory symptoms. Consistently, we found that Clxn is expressed in mice left-right organizer. Transmission electron microscopy depicted ODA defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1, and DNAI2 from the distal axonemes, and mislocalization or absence of DNAH9. In addition, CLXN was undetectable in ciliary axonemes of individuals with defects in the ODA-docking machinery: ODAD1, ODAD2, ODAD3, and ODAD4. Furthermore, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility. CONCLUSION: Our results revealed that pathogenic variants in CLXN cause PCD with defects in the assembly of distal ODAs in the respiratory cilia. CLXN should be referred to as ODA-docking complex-associated protein ODAD5.


Assuntos
Cílios , Síndrome de Kartagener , Humanos , Animais , Camundongos , Cílios/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Proteínas de Ligação ao Cálcio , Axonema/genética , Axonema/metabolismo , Axonema/patologia , Mutação , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo
8.
Cell Death Dis ; 14(2): 127, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792588

RESUMO

The axonemal dynein arms (outer (ODA) and inner dynein arms (IDAs)) are multiprotein structures organized by light, intermediate, light intermediate (LIC), and heavy chain proteins. They hydrolyze ATP to promote ciliary and flagellar movement. Till now, a variety of dynein protein deficiencies have been linked with asthenospermia (ASZ), highlighting the significance of these structures in human sperm motility. Herein, we detected bi-allelic DNALI1 mutations [c.663_666del (p.Glu221fs)], in an ASZ patient, which resulted in the complete loss of the DNALI1 in the patient's sperm. We identified loss of sperm DNAH1 and DNAH7 rather than DNAH10 in both DNALI1663_666del patient and Dnali1-/- mice, demonstrating that mammalian DNALI1 is a LIC protein of a partial IDA subspecies. More importantly, we revealed that DNALI1 loss contributed to asymmetries in the most fibrous sheath (FS) of the sperm flagellum in both species. Immunoprecipitation revealed that DNALI1 might interact with the cytoplasmic dynein complex proteins in the testes. Furthermore, DNALI1 loss severely disrupted the transport and assembly of the FS proteins, especially AKAP3 and AKAP4, during flagellogenesis. Hence, DNALI1 may possess a non-classical molecular function, whereby it regulates the cytoplasmic dynein complex that assembles the flagella. We conclude that a DNALI deficiency-induced IDAs injury and an asymmetric FS-driven tail rigid structure alteration may simultaneously cause flagellum immotility. Finally, intracytoplasmic sperm injection (ICSI) can effectively resolve patient infertility. Collectively, we demonstrate that DNALI1 is a newly causative gene for AZS in both humans and mice, which possesses multiple crucial roles in modulating flagellar assembly and motility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/metabolismo , Astenozoospermia/genética , Astenozoospermia/complicações , Astenozoospermia/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mamíferos , Mutação , Proteínas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo
9.
J Hum Genet ; 68(6): 369-374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36747106

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting ciliary structure and function. PCD exhibiting dynein regulatory complex subunit 1 (DRC1) exon 1-4 deletion has been reported in several Japanese PCD patients; however, no large scale studies have been performed. Here, we aimed to determine the prevalence and founder effect of this variant in the Korean population. Using an in-house copy number variation tool, we screened for DRC1 exon 1-4 deletion in 20 patients with PCD and exome data of 1435 patients in the Seoul National University Hospital repository. In cases of suspected DRC1 deletion, confirmatory gap-PCR was performed. In a PCD cohort, three of 20 (15%) patients were positive for DRC1 exon 1-4 deletion (NM_145038.5(DRC1): c.1-3952_540 + 1331del27748-bp) while pathogenic variants were found in CCDC39 (N = 1), DNAAF6 (N = 1), DNAH9 (N = 1). In the 1,435-sample exome data, seven patients (0.49%) were confirmed to have DRC1 exon 1-4 deletion. A chimeric sequence including the junction was searched from the 1000 Genomes Project data repository. One Japanese patient (0.96%) was found to have the same DRC1 exon 1-4 deletion, which was absent in other populations. This study demonstrated that the DRC1 exon 1-4 deletion is a founder mutation based on haplotype analysis. In summary, the prevalence of PCD based on DRC1 exon 1-4 deletion is particularly high in Korean and Japanese populations, which is attributed to the founder effect. Genetic testing for DRC1 exon 1-4 deletion should be considered as an initial screening tool for Korean and Japanese patients with PCD.


Assuntos
Transtornos da Motilidade Ciliar , Humanos , Transtornos da Motilidade Ciliar/epidemiologia , Transtornos da Motilidade Ciliar/genética , Prevalência , Efeito Fundador , Variações do Número de Cópias de DNA , Éxons/genética , República da Coreia/epidemiologia , Mutação , Dineínas do Axonema/genética , Proteínas Associadas aos Microtúbulos/genética
10.
Int J Biol Sci ; 19(2): 393-411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632462

RESUMO

Asthenoteratozoospermia is one of the major factors for male infertility, whereas the causes of large numbers of cases are still unknown. We identified compound heterozygous variants of FSIP2 in three unrelated individuals from a cohort of 105 patients with asthenoteratozoospermia by exome sequencing. Deleterious FSIP2 variations caused severe disassembly of the fibrous sheath and axonemal defects. Intriguingly, spermatozoa in our study manifested "super-length" mitochondrial sheaths, increased levels of the mitochondrial sheath outer membrane protein TOMM20 and decreased mitochondrial ATP consumption. Dislocation or deletion of the annulus and reduction or dislocation of the annulus protein SEPT4 were also observed. While the lengthened mitochondrial sheaths were not presented in men harboring SEPT4 variants. Furthermore, female partners of two of three men achieved successful pregnancies following intracytoplasmic sperm injection (ICSI). Overall, we presume that FSIP2 may not only serve as a structural protein of the fibrous sheath but also as an intra-flagellar transporter involving in the axonemal assembly, mitochondrial selection and the termination of mitochondrial sheath extension during spermatogenesis, and ICSI is an effective treatment for individuals with FSIP2-associated asthenoteratozoospermia.


Assuntos
Astenozoospermia , Dineínas do Axonema , Mitocôndrias , Proteínas de Plasma Seminal , Feminino , Humanos , Masculino , Gravidez , Astenozoospermia/genética , Espermatogênese/genética , Espermatozoides/ultraestrutura , Proteínas de Plasma Seminal/genética , Dineínas do Axonema/genética , Injeções de Esperma Intracitoplásmicas , Mitocôndrias/ultraestrutura
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 71-75, 2023 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-36585005

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic basis of a child with Kartagener syndrome (KTS). METHODS: Trio-whole exome sequencing was carried out for the child and his parents, and candidate variants were verified by Sanger sequencing. Changes in protein structure due to missense variants were simulated and analyzed, and the Human Splicing Finder 3.0 (HSF 3.0) online platform was used to predict the effect of the variant of the non-coding region. RESULTS: The child had featured bronchiectasis, sinusitis and visceral inversion. Genetic testing revealed that he has harbored compound heterozygous variants of the DNAH5 gene, namely c.5174T>C and c.7610-3T>G. Sanger sequencing confirmed the existence of the variants. The variants were not found in the dbSNP, 1000 Genomes, ExAC, ClinVar and HGMD databases. Protein structural analysis suggested that the c.5174T>C (p.Leu1725Pro) variant may affect the stability of local structure and its biological activity. The results of HSF 3.0 analysis suggested that the c.7610-3T>G variant has probably destroyed a splicing receptor to affect the transcription process. CONCLUSION: The compound heterozygous variants of the DNAH5 gene probably underlay the pathogenesis in the child. Above finding may facilitate the understanding of the clinical characteristics and genetic basis of KTS, and further expand the spectrum of DNAH5 gene variants.


Assuntos
Síndrome de Kartagener , Masculino , Humanos , Criança , Mutação , Síndrome de Kartagener/genética , Testes Genéticos , Mutação de Sentido Incorreto , Sequenciamento do Exoma , Dineínas do Axonema/genética
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970881

RESUMO

OBJECTIVE@#To explore the clinical characteristics and genetic basis of a child with Kartagener syndrome (KTS).@*METHODS@#Trio-whole exome sequencing was carried out for the child and his parents, and candidate variants were verified by Sanger sequencing. Changes in protein structure due to missense variants were simulated and analyzed, and the Human Splicing Finder 3.0 (HSF 3.0) online platform was used to predict the effect of the variant of the non-coding region.@*RESULTS@#The child had featured bronchiectasis, sinusitis and visceral inversion. Genetic testing revealed that he has harbored compound heterozygous variants of the DNAH5 gene, namely c.5174T>C and c.7610-3T>G. Sanger sequencing confirmed the existence of the variants. The variants were not found in the dbSNP, 1000 Genomes, ExAC, ClinVar and HGMD databases. Protein structural analysis suggested that the c.5174T>C (p.Leu1725Pro) variant may affect the stability of local structure and its biological activity. The results of HSF 3.0 analysis suggested that the c.7610-3T>G variant has probably destroyed a splicing receptor to affect the transcription process.@*CONCLUSION@#The compound heterozygous variants of the DNAH5 gene probably underlay the pathogenesis in the child. Above finding may facilitate the understanding of the clinical characteristics and genetic basis of KTS, and further expand the spectrum of DNAH5 gene variants.


Assuntos
Masculino , Humanos , Criança , Mutação , Síndrome de Kartagener/genética , Testes Genéticos , Mutação de Sentido Incorreto , Sequenciamento do Exoma , Dineínas do Axonema/genética
13.
Medicine (Baltimore) ; 102(52): e36271, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206729

RESUMO

RATIONALE: To analyze clinical and imaging features, ciliary structure and family gene mutation loci of a primary ciliary dyskinesia (PCD) boy with a dual-allele heterozygous mutation of DNAH5. PATIENT CONCERNS: Clinical data of the proband and relatives. Electronic bronchoscopy, transmission electron microscope (TEM) of the cilia and next-generation sequencing (NGS) were performed. PCD-related DNAH5 exon mutation sites were searched. DIAGNOSES: A 10-year and 10-month-old boy was hospitalized due to "recurrent cough, expectoration, sputum and shortness of breathing after activity for over 7 years, and aggravated for 1 week." Moderate and fine wet rales were detected in bilateral lungs. Clubbing fingers and toes were observed. In local hospitals, he was diagnosed with Mycoplasma pneumoniae infection and Streptococcus pneumoniae was cultured. INTERVENTIONS: Pulmonary function testing showed mixed ventilation dysfunction and positive for bronchial dilation test. Imaging examination and fiberoptic bronchoscopy revealed transposition of all viscera, bilateral pneumonia, and bronchiectasis. TEM detected no loss of the outer dynein arms. NGS identified 2 mutations (c.4360C>T, c.9346C>T) in the DNAH5 gene inherited from healthy parents. OUTCOMES: According to literature review until 2022, among 144 exon gene mutations causing amino acid changes, C>T mutation is the most common in 44 cases, followed by deletion mutations in 30 cases. Among the amino acid changes induced by gene mutation, terminated mutations were identified in 89 cases. LESSONS: For suspected PCD patients, TEM and NGS should be performed. Prompt diagnosis and treatment may delay the incidence of bronchiectasis and improve clinical prognosis.


Assuntos
Síndrome de Kartagener , Humanos , Masculino , Alelos , Aminoácidos , Dineínas do Axonema/genética , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutação , Criança
14.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552777

RESUMO

Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with the DNAH5 mutation. The motile cilia in the organoid were observed and could be stably maintained for an extended time. We further found abnormal ciliary function and a decreased immune response caused by the DNAH5 mutation through single-cell RNA sequencing (scRNA-Seq) and proteomic analyses. Additionally, the directed induction of the ciliated cells, regulated by TGF-ß/BMP and the Notch pathway, also increased the expression of inflammatory cytokines. Taken together, these results demonstrated that the combination of multiomics analysis and organoid modelling could reveal the close connection between the immune response and the DNAH5 gene.


Assuntos
Dineínas do Axonema , Síndrome de Kartagener , Criança , Humanos , Dineínas do Axonema/genética , Síndrome de Kartagener/genética , Fator de Crescimento Transformador beta , Multiômica , Proteômica , Organoides , Diferenciação Celular/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-36265913

RESUMO

Clinical utility of genetic testing has rapidly increased in the past decade to identify the definitive diagnosis, etiology, and specific management. The majority of patients receiving testing are children. There are several barriers for genetic tests in adult patients; barriers may arise from either patients or clinicians. Our study aims to realize the detection rate and the benefits of genetic tests in adults. We conducted a prospective study of 10 adult patients who were referred to a genetic clinic. Exome sequencing (ES) was pursued in all cases, and chromosomal microarray (CMA) was performed for six cases. Our result is impressive; six cases (60%) received likely pathogenic and pathogenic variants. Four definitive diagnosis cases had known pathogenic variants in KCNJ2, TGFBR1, SCN1A, and FBN1, whereas another two cases revealed novel likely pathogenic and pathogenic variants in GNB1 and DNAH9. Our study demonstrates the success in genetic diagnosis in adult patients: four cases with definitive, two cases with possible, and one case with partial diagnosis. The advantage of diagnosis is beyond obtaining the diagnosis itself, but also relieving any doubt for the patient regarding any previous questionable diagnosis, guide for management, and recurrence risk in their children or family members. Therefore, this supports the value of genetic testing in adult patients.


Assuntos
Cromossomos , Testes Genéticos , Criança , Humanos , Adulto , Estudos Prospectivos , Dineínas do Axonema/genética
16.
PLoS Pathog ; 18(9): e1009984, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155669

RESUMO

Flagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids. Trypanosoma brucei flagella beat with a bending wave that propagates from the flagellum's tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein-associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex-type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi in both wild-type and FLAM3, a flagellar attachment zone protein, knockdown cells and quantified TbLC2's effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to-tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids' unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.


Assuntos
Trypanosoma brucei brucei , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Movimento Celular , Flagelos/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/metabolismo
17.
Genes (Basel) ; 13(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140829

RESUMO

Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.


Assuntos
Cílios , Transposição dos Grandes Vasos , Artérias , Dineínas do Axonema/genética , Cílios/genética , Análise por Conglomerados , Humanos , Transposição dos Grandes Vasos/genética , Sequenciamento do Exoma
18.
Andrologia ; 54(10): e14553, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35932098

RESUMO

Multiple morphological abnormalities of the sperm flagellum (MMAF) have been reported to be an important cause of male infertility and reflect a heterogeneous genetic disorder. Previous studies have identified dozens of candidate pathogenic genes for MMAF, but the aetiology in approximately 50% of cases remains unexplained. The present study aimed to identify novel potentially pathogenic gene variants of MMAF. A Chinese family with a 32-year-old infertile proband presenting with MMAF was recruited, and sperm morphology of the patient was examined by Papanicolaou staining. Whole exome sequencing was performed on the proband and Sanger sequencing was used to identify genetic variants in the family. The frequencies of variants were assessed using public databases and the effects on protein structure and function were predicted by online bioinformatics tools. The patient exhibited asthenozoospermia and a MMAF phenotype. Novel compound heterozygous variants (c.5368C > T, p.R1790C and c.13183C > T, p.R4395W) of the DNAH17 gene were identified in the patient, and showed autosomal recessive inheritance in this family. These variants were very rare in the GnomAD database. The two mutated amino acids were located in a highly conserved region of the DNAH17 protein. In silico analysis revealed that the compound heterozygous variants may compromise the function of DNAH17. Our findings expand upon the spectrum of pathogenic DNAH17 variants that are responsible for MMAF, and provide new knowledge for genetic counselling of male infertility due to MMAF.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Aminoácidos/genética , Aminoácidos/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , China , Humanos , Infertilidade Masculina/patologia , Masculino , Mutação , Sêmen/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
19.
Mol Biol Rep ; 49(10): 9365-9372, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35960414

RESUMO

BACKGROUND: Numerous pieces of evidence show that many environmental and genetic factors can cause male infertility. Much research in recent years has investigated the function of long non-coding RNAs (lncRNAs) in fertility. The main objective of the current study was to investigate the expression of Dynein Axonemal Heavy Chain 5 (DNAH5) as a gene that plays an essential role in sperm motility in individuals with asthenozoospermia and terato-asthenozoospermia. Alterations in linc02220 expression (located close to the DNAH5 gene), its action potential in DNAH5 regulating, and the correlation between their expression and normal sperm morphology and motility were also examined. METHOD AND MATERIAL: This study examined the semen of 31 asthenozoospermia individuals (AZ), 33 terato-asthenozoospermia (TAZ) individuals, and 33 normospermia (NZ) individuals with normal sperm as a control group. The expression levels of DNAH5 and linc02220 in the sperm samples were analyzed by real-time PCR. RESULTS: Gene expression analysis revealed a significant association between DNAH5 expression and sperm motility and morphology (p < 0.0001). The DNAH5 expression levels in the TAZ and AZ groups were also significantly reduced; however, linc02220 was significantly upregulated in both TAZ and AZ groups compared to the NZ group (p < 0.0001). DNAH5 expression in the TAZ and AZ groups was negatively correlated with linc02220 expression, thus, DNAH5 downregulation was associated with linc02220 overexpression (p < 0.05). CONCLUSIONS: The gene linc02220 could be a potential regulatory target for DNAH5, and both could affect sperm's normal motility and morphology.


Assuntos
Astenozoospermia , RNA Longo não Codificante , Astenozoospermia/genética , Dineínas do Axonema/genética , Dineínas/genética , Dineínas/metabolismo , Humanos , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
20.
Biomolecules ; 12(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36008939

RESUMO

Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteômica , Dineínas do Axonema/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...